Citation: | LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. DOI: 10.13374/j.issn2095-9389.2021.08.05.003 |
[1] |
田玮, 彭犇, 王晟, 等. 含锌电炉粉尘处理技术的研究进展. 环境工程, 2019, 37(2):144
Tian W, Peng B, Wang S, et al. Research progress of treatment technologies for Zn-containing electric arc furnaces dust. Environ Eng, 2019, 37(2): 144
|
[2] |
张金元, 程欣, 宋腾飞, 等. 我国钢铁行业发展状况分析及趋势预测. 冶金经济与管理, 2021(4):19
Zhang J Y, Cheng X, Song T F, et al. Analysis and forecast of the development of China's iron and steel industry. Yejin Jingji Yu Guanli, 2021(4): 19
|
[3] |
王飞, 毛瑞, 茅沈栋, 等. 含锌粉尘冷固结团块高温自还原过程分析. 钢铁研究学报, 2020, 32(7):626
Wang F, Mao R, Mao S D, et al. Analysis of self-reduction process of cold-bonded briquettes made from zinc-bearing dust at high temperature. J Iron Steel Res, 2020, 32(7): 626
|
[4] |
张龙强. 双碳背景下百亿吨钢铁积蓄的废钢资源供给分析. 中国冶金文摘, 2021, 35(4):7
Zhang L Q. Analysis of Chinese ten billion tons of scrap steel resource supply under the dual-carbon background. China Metals Digest, 2021, 35(4): 7
|
[5] |
谭宇佳, 郭宇峰, 姜涛, 等. 含锌电炉粉尘处理工艺现状及发展. 矿产综合利用, 2017(3):44
Tan Y J, Guo Y F, Jiang T, et al. Treatment technology and development of zinc electric arc furnace dust. Multipurp Util Miner Resour, 2017(3): 44
|
[6] |
Al-Harahsheh M, Aljarrah M, Rummanah F, et al. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J Anal Appl Pyrolysis, 2017, 125: 50 doi: 10.1016/j.jaap.2017.04.019
|
[7] |
Lanzerstorfer C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod, 2018, 174: 1 doi: 10.1016/j.jclepro.2017.10.312
|
[8] |
刘琳, 赵强, 冯晓峰. 含锌除尘灰锌铁分离研究. 钢铁研究学报, 2020, 32(8):714
Liu L, Zhao Q, Feng X F. Study on separation of zinc and iron from dust ash containing zinc. J Iron Steel Res, 2020, 32(8): 714
|
[9] |
Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70(1-3): 175 doi: 10.1016/S0304-386X(03)00079-3
|
[10] |
Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7
|
[11] |
许继芳, 杨莹, 郭恒睿, 等. CO还原气氛下铁酸锌选择性分解过程研究. 矿冶工程, 2019, 39(1):86 doi: 10.3969/j.issn.0253-6099.2019.01.022
Xu J F, Yang Y, Guo H R, et al. Selective decomposition process of zinc ferrite in CO reducing atmosphere. Min Metall Eng, 2019, 39(1): 86 doi: 10.3969/j.issn.0253-6099.2019.01.022
|
[12] |
Wang C, Guo Y F, Wang S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int J Miner Metall Mater, 2020, 27(1): 26 doi: 10.1007/s12613-019-1858-x
|
[13] |
Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev, 2006, 28(2): 127 doi: 10.1080/08827500601012878
|
[14] |
Tong L F. Reduction mechanisms and behaviour of zinc ferrite—Part 1: Pure ZnFe2O4. Miner Process Extr Metall, 2001, 110(1): 14 doi: 10.1179/mpm.2001.110.1.14
|
[15] |
胡晓军, 刘俊宝, 郭培民, 等. 铁酸锌气体还原的热力学分析. 工程科学学报, 2015, 37(4):429
Hu X J, Liu J B, Guo P M, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO–CO2. Chin J Eng, 2015, 37(4): 429
|
[16] |
Junca E, Oliveira J R, Restivo T A G, et al. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim, 2016, 123(1): 631 doi: 10.1007/s10973-015-4973-6
|
[17] |
Chen Y J, Wang Y Y, Peng N, et al. Isothermal reduction kinetics of zinc calcine under carbon monoxide. Trans Nonferrous Met Soc China, 2020, 30(8): 2274 doi: 10.1016/S1003-6326(20)65378-X
|
[18] |
邬桂婷, 刘维, 韩俊伟, 等. 铁酸锌还原–氧化选择性分解行为研究. 矿冶工程, 2021, 41(1):80
Wu G T, Liu W, Han J W, et al. Selective decomposition behavior of zinc ferrite by reduction and oxidation. Min Metall Eng, 2021, 41(1): 80
|
[19] |
Wang X, Yang D J, Ju S H, et al. Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Trans Nonferrous Met Soc China, 2013, 23(12): 3808 doi: 10.1016/S1003-6326(13)62933-7
|
[20] |
汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和试验研究. 矿产综合利用, 2020(2):167 doi: 10.3969/j.issn.1000-6532.2020.02.030
Wang X, Deng Y X, Xu J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon. Multipurp Util Miner Resour, 2020(2): 167 doi: 10.3969/j.issn.1000-6532.2020.02.030
|
[21] |
李洋, 张建良, 袁骧, 等. 电炉粉尘锌元素回收利用基础分析. 中国冶金, 2018, 28(11):16 doi: 10.13228/j.boyuan.issn1006-9356.20180123
Li Y, Zhang J L, Yuan X, et al. Basic analysis on recovery and utilization of zinc in EAF dust. China Metall, 2018, 28(11): 16 doi: 10.13228/j.boyuan.issn1006-9356.20180123
|
[22] |
Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, 2003, 406(1-2): 1 doi: 10.1016/S0040-6031(03)00222-3
|
[23] |
Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7
|
[24] |
Kou M Y, Zuo H B, Ning X J, et al. Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal. Energy, 2019, 188: 116030 doi: 10.1016/j.energy.2019.116030
|
[25] |
Ren S, Zhang J L. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochimica Acta, 2013, 561: 36 doi: 10.1016/j.tca.2013.03.040
|
[26] |
Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 2000, 355(1-2): 239 doi: 10.1016/S0040-6031(00)00449-4
|