LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. DOI: 10.13374/j.issn2095-9389.2021.08.05.003
Citation: LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. DOI: 10.13374/j.issn2095-9389.2021.08.05.003

Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite

More Information
  • Corresponding author:

    LIU Zheng-jian, E-mail: liuzhengjian@ustb.edu.cn

  • Received Date: August 04, 2021
  • Available Online: September 21, 2021
  • Published Date: December 31, 2022
  • The amount of zinc-containing EAF dust has increased due to the increased proportion of galvanized steel scrap used in the electric arc furnace (EAF) steelmaking process. If the zinc in the EAF dust is not recycled, it will not only lead to a waste of valuable metal resources but also results in environmental pollution. Zinc is mainly present in the EAF dust in the form of zinc ferrite (ZnFe2O4). Zinc ferrite is a kind of spinel mineral that exhibits a crystal lattice of greater stability, which increases the difficulty of recycling valuable elements such as zinc and iron from zinc-containing EAF dust. To further clarify the carbothermic reduction process of zinc ferrite, this paper studies the kinetics of the non-isothermal carbothermal reduction of zinc ferrite and its reduction reaction mechanism. The phase transition process of the zinc ferrite carbothermal reduction reaction was analyzed via the XRD results of the reduced zinc ferrite. FeO0.85·xZnO was found at 950 °C when Fe3+ was reduced to Fe2+. The relationship between the conversion and conversion rate of the zinc ferrite carbothermal reduction process is discussed. The reduction process can be divided into three stages, and the conversion of the second stage changes greatly (0.085–0.813). Finally, the kinetics of the second stage of the carbothermic reduction of the zinc ferrite at different heating rates was evaluated through the isoconversional method and the master curve fitting method. The activation energy of the second stage is between 331.01–490.04 kJ·mol−1, and the average activation energy is 362.16 kJ·mol−1. The large change in the activation energy in the second stage indicates that the reactions in this stage are more complicated, and there are obvious differences in the activation energy between the reactions. The secondary chemical reaction is the main rate-controlling link in the second stage, and the kinetics equation of the second stage is determined.
  • [1]
    田玮, 彭犇, 王晟, 等. 含锌电炉粉尘处理技术的研究进展. 环境工程, 2019, 37(2):144

    Tian W, Peng B, Wang S, et al. Research progress of treatment technologies for Zn-containing electric arc furnaces dust. Environ Eng, 2019, 37(2): 144
    [2]
    张金元, 程欣, 宋腾飞, 等. 我国钢铁行业发展状况分析及趋势预测. 冶金经济与管理, 2021(4):19

    Zhang J Y, Cheng X, Song T F, et al. Analysis and forecast of the development of China's iron and steel industry. Yejin Jingji Yu Guanli, 2021(4): 19
    [3]
    王飞, 毛瑞, 茅沈栋, 等. 含锌粉尘冷固结团块高温自还原过程分析. 钢铁研究学报, 2020, 32(7):626

    Wang F, Mao R, Mao S D, et al. Analysis of self-reduction process of cold-bonded briquettes made from zinc-bearing dust at high temperature. J Iron Steel Res, 2020, 32(7): 626
    [4]
    张龙强. 双碳背景下百亿吨钢铁积蓄的废钢资源供给分析. 中国冶金文摘, 2021, 35(4):7

    Zhang L Q. Analysis of Chinese ten billion tons of scrap steel resource supply under the dual-carbon background. China Metals Digest, 2021, 35(4): 7
    [5]
    谭宇佳, 郭宇峰, 姜涛, 等. 含锌电炉粉尘处理工艺现状及发展. 矿产综合利用, 2017(3):44

    Tan Y J, Guo Y F, Jiang T, et al. Treatment technology and development of zinc electric arc furnace dust. Multipurp Util Miner Resour, 2017(3): 44
    [6]
    Al-Harahsheh M, Aljarrah M, Rummanah F, et al. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J Anal Appl Pyrolysis, 2017, 125: 50 doi: 10.1016/j.jaap.2017.04.019
    [7]
    Lanzerstorfer C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod, 2018, 174: 1 doi: 10.1016/j.jclepro.2017.10.312
    [8]
    刘琳, 赵强, 冯晓峰. 含锌除尘灰锌铁分离研究. 钢铁研究学报, 2020, 32(8):714

    Liu L, Zhao Q, Feng X F. Study on separation of zinc and iron from dust ash containing zinc. J Iron Steel Res, 2020, 32(8): 714
    [9]
    Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70(1-3): 175 doi: 10.1016/S0304-386X(03)00079-3
    [10]
    Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7
    [11]
    许继芳, 杨莹, 郭恒睿, 等. CO还原气氛下铁酸锌选择性分解过程研究. 矿冶工程, 2019, 39(1):86 doi: 10.3969/j.issn.0253-6099.2019.01.022

    Xu J F, Yang Y, Guo H R, et al. Selective decomposition process of zinc ferrite in CO reducing atmosphere. Min Metall Eng, 2019, 39(1): 86 doi: 10.3969/j.issn.0253-6099.2019.01.022
    [12]
    Wang C, Guo Y F, Wang S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int J Miner Metall Mater, 2020, 27(1): 26 doi: 10.1007/s12613-019-1858-x
    [13]
    Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev, 2006, 28(2): 127 doi: 10.1080/08827500601012878
    [14]
    Tong L F. Reduction mechanisms and behaviour of zinc ferrite—Part 1: Pure ZnFe2O4. Miner Process Extr Metall, 2001, 110(1): 14 doi: 10.1179/mpm.2001.110.1.14
    [15]
    胡晓军, 刘俊宝, 郭培民, 等. 铁酸锌气体还原的热力学分析. 工程科学学报, 2015, 37(4):429

    Hu X J, Liu J B, Guo P M, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO–CO2. Chin J Eng, 2015, 37(4): 429
    [16]
    Junca E, Oliveira J R, Restivo T A G, et al. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim, 2016, 123(1): 631 doi: 10.1007/s10973-015-4973-6
    [17]
    Chen Y J, Wang Y Y, Peng N, et al. Isothermal reduction kinetics of zinc calcine under carbon monoxide. Trans Nonferrous Met Soc China, 2020, 30(8): 2274 doi: 10.1016/S1003-6326(20)65378-X
    [18]
    邬桂婷, 刘维, 韩俊伟, 等. 铁酸锌还原–氧化选择性分解行为研究. 矿冶工程, 2021, 41(1):80

    Wu G T, Liu W, Han J W, et al. Selective decomposition behavior of zinc ferrite by reduction and oxidation. Min Metall Eng, 2021, 41(1): 80
    [19]
    Wang X, Yang D J, Ju S H, et al. Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Trans Nonferrous Met Soc China, 2013, 23(12): 3808 doi: 10.1016/S1003-6326(13)62933-7
    [20]
    汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和试验研究. 矿产综合利用, 2020(2):167 doi: 10.3969/j.issn.1000-6532.2020.02.030

    Wang X, Deng Y X, Xu J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon. Multipurp Util Miner Resour, 2020(2): 167 doi: 10.3969/j.issn.1000-6532.2020.02.030
    [21]
    李洋, 张建良, 袁骧, 等. 电炉粉尘锌元素回收利用基础分析. 中国冶金, 2018, 28(11):16 doi: 10.13228/j.boyuan.issn1006-9356.20180123

    Li Y, Zhang J L, Yuan X, et al. Basic analysis on recovery and utilization of zinc in EAF dust. China Metall, 2018, 28(11): 16 doi: 10.13228/j.boyuan.issn1006-9356.20180123
    [22]
    Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, 2003, 406(1-2): 1 doi: 10.1016/S0040-6031(03)00222-3
    [23]
    Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7
    [24]
    Kou M Y, Zuo H B, Ning X J, et al. Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal. Energy, 2019, 188: 116030 doi: 10.1016/j.energy.2019.116030
    [25]
    Ren S, Zhang J L. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochimica Acta, 2013, 561: 36 doi: 10.1016/j.tca.2013.03.040
    [26]
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 2000, 355(1-2): 239 doi: 10.1016/S0040-6031(00)00449-4
  • Cited by

    Periodical cited type(4)

    1. 杨文招,郑富强,胡兵,朱伊翔,胡佩伟. 含锌粉尘的协同还原及其脱锌动力学研究. 烧结球团. 2025(01): 117-125 .
    2. 张鑫阳,邢鹏飞,庄艳歆,都兴红,王帅. 三氧化二铋碳热还原反应的动力学. 有色金属(冶炼部分). 2024(01): 33-40 .
    3. 余水,毛瑞,王飞,姚海威. 高碱度电炉粉尘碳热还原动力学及反应机制. 钢铁研究学报. 2024(02): 256-264 .
    4. 祁德兴,余水,郭秋月,文应江,邱家用,毛瑞. 铁酸锌钙化碳热还原的热力学行为. 有色金属科学与工程. 2024(04): 505-512 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (773) PDF downloads (104) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return