Citation: | QIU Hua-xin, DUAN Hai-bin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317-322. DOI: 10.13374/j.issn2095-9389.2017.03.001 |
[2] |
Lundquist E H. Drone duties:the dull, the dirty, and the dangerous. Naval Forces, 2003, 24(3):20
|
[6] |
Duan H B, Shao S, Su B W, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci China Technol Sci, 2010, 53(8):2025
|
[8] |
Qiu H X, Wei C, Dou R, et al. Fully autonomous flying:From collective motion in bird flocks to unmanned aerial vehicle autonomous swarms. Sci China Inf Sci, 2015, 58(12):1
|
[9] |
Bajec I L, Heppner F H. Organized flight in birds. Anim Behav, 2009, 78(4):777
|
[10] |
Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance:evidence from a field study. Proc Nat Acad Sci, 2008, 105(4):1232
|
[11] |
Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks. Proc Nat Acad Sci, 2010, 107(26):11865
|
[12] |
Attanasi A, Cavagna A, Del Castello L, et al. Information transfer and behavioural inertia in starling flocks. Nat Phys, 2014, 10:691
|
[13] |
Pearce D J G, Miller A M, Rowlands G, et al. Role of projection in the control of bird flocks. Proc Nat Acad Sci, 2014, 111(29):10422
|
[14] |
Nagy M, Ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464(7290):890
|
[15] |
Nagy M, Vásárhelyi G, Pettit B, et al. Context-dependent hierarchies in pigeons. Proc Nat Acad Sci, 2013, 110(32):13049
|
[16] |
Zafeiris A, Vicsek T. Advantages of hierarchical organization:from pigeon flocks to optimal network structures//Research in the Decision Sciences for Global Business:Best Papers from the 2013 Annual Conference. New Jersey:Pearson Education, 2015
|
[17] |
Zhang H T, Chen Z Y, Vicsek T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks. Sci Rep, 2014, 4:5805
|
[18] |
Yomosa M, Mizuguchi T, Vásárhelyi G, et al. Coordinated behaviour in pigeon flocks. PLoS ONE, 2015, 10(10):e0140558
|
[19] |
Nepusz T, Vicsek T. Hierarchical self-organization of non-cooperating individuals. PLoS ONE, 2013, 8(12):e81449
|
[20] |
Reynolds C W. Flocks, herds and schools:a distributed behavioral model. ACM SIGGRAPH Comput Graphics, 1987, 21(4):25
|
[21] |
Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75(6):1226
|
[22] |
Yang W, Cao L, Wang X F, et al. Consensus in a heterogeneous influence network. Phys Rev E, 2006, 74(3):037101
|
[23] |
Li W, Wang X F. Adaptive velocity strategy for swarm aggregation. Phys Rev E, 2006, 75(2):021917
|
[24] |
Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups. J Theor Biol, 2002, 218(1):1
|
[25] |
Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Autom Control, 2007, 52(5):852
|
[26] |
Cavagna A, Giardina I, Grigera T S, et al. Silent flocks:constraints on signal propagation across biological groups. Phys Rev Lett, 2015, 114(21):218101
|
[27] |
Toner J, Tu Y H. Long-range order in a two-dimensional dynamical XY model:how birds fly together. Phys Rev Lett, 1995, 75(23):4326
|
[28] |
Cavagna A, Del Castello L, Giardina I, et al. Flocking and turning:a new model for self-organized collective motion. J Stat Phys, 2015, 158(3):601
|
[30] |
Hauert S, Leven S, Varga M, et al. Reynolds flocking in reality with fixed-wing robots:communication range vs. maximum turning rate//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, 2011:5015
|
[31] |
Vásárhelyi G, Virágh C, Somorjai G, et al. Outdoor flocking and formation flight with autonomous aerial robots//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). Chicago, 2014:3866
|
[32] |
Virágh C, Vásárhelyi G, Tarcai N, et al. Flocking algorithm for autonomous flying robots. Bioinspir Biomim, 2014, 9(2):025012
|
[33] |
Saska M. MAV-swarms:unmanned aerial vehicles stabilized along a given path using onboard relative localization//Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Denver, 2015:894
|
[34] |
Duan H B, Luo Q N, Shi Y H, et al. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration. IEEE Comput Intell Mag, 2013, 8(3):16
|
[35] |
Duan H B, Luo Q N, Yu Y X. Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles. Sci China Technol Sci, 2013, 56(5):1066
|
[36] |
Qiu H X, Duan H B. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dyn, 2014, 78(3):1973
|
[38] |
Biro D, Sasaki T, Portugal S J. Bringing a time-depth perspective to collective animal behavior. Trends Ecol Evol, 2016, 31(7):550
|