Protective mechanism of weathering steel rust layers in atmospheric environments and their stabilization treatment technologies
-
摘要:
耐候钢能够自发形成具有防护作用的锈层. 稳定致密且贴附表面的锈层能够有效地阻碍腐蚀介质与基体的接触,可在自然环境中发挥优异的耐腐蚀性. 本文从锈层结构、锈层成分和形成机制等方面对耐候钢的锈层保护性能进行了阐述,讨论了初期锈层的形成过程,明确了锈层复层结构的精细划分以及各层腐蚀产物对耐候钢耐蚀性的实际贡献. 详细分析了合金化元素、环境因素(盐度、温度、湿度、辐照等)对保护性锈层形成和稳定化的影响机制,明确了传统的Cr、Cu、Ni等合金元素以及Sn、Mo、稀土元素等其他元素对有效腐蚀产物的形成、锈层形核、锈层致密性或粘结强度等的作用机制. 目前针对锈层耐蚀性的研究工作正在向人工智能、先进传感器和大数据技术等新兴领域扩展,但在复杂大气环境(如海洋–工业大气复合环境)对锈层形成的作用机制、多种合金元素共存的影响等方面还存在明显不足. 更重要的是,由于完整稳定锈层的形成条件苛刻,在恶劣环境中甚至难以形成保护性锈层,仍然需要相应的防护措施. 详细讨论了现有的锈层稳定化处理技术,从涂膜技术、喷淋技术、锈层表面重构技术等方面阐述了现有的主要技术路线,对提升耐候钢的可靠性、稳定性和适用性具有重要意义,高效环保的锈层稳定化处理技术将是未来重要的发展方向之一.
Abstract:Corrosion is a major cause of steel degradation, leading to material thinning, perforation, stress concentration, and ultimately deterioration of mechanical properties that can result in engineering structure failures. Weathering steels are extensively used across various applications, such as bridges, buildings, and vehicles, and are recognized for being economical and environmentally friendly. These steels can spontaneously develop protective rust layers, which are stable, compact, and adhesive, effectively inhibiting direct contact between corrosive media and the steel substrate, thereby offering superior corrosion resistance in atmospheric environments. Ideally, the corrosion resistance of the weathering steel rust layer improves with increased exposure time, though various factors can influence this behavior. This study discusses the protective properties of rust layers from multiple perspectives, including their internal and external structure, composition, formation mechanism, the influence of environmental factors and alloying elements on corrosion resistance, and current treatment technologies for rust stabilization. The rust stabilization treatment technology has been examined from its historical development to its current state and future direction. The initial process of rust formation has been described, beginning with localized sites that gradually coalesce. The dual-layered structure of rust has been introduced, and recent studies have proposed a multi-layered structure, with the specific contribution of each layer clarified. The influence of alloying elements and environmental factors, such as salinity, temperature, humidity, and irradiation, on the formation and stabilization of protective rust layers has been discussed in detail. Additionally, the impact of traditional elements like Cr, Cu, and Ni, as well as other elements such as Sn, Mo, and rare earth elements, on the formation of effective corrosion products, the nucleation of rust layers, and the compactness and bonding strength of the rust has also been analyzed. Most alloying elements enhance the protective properties of rust layers by improving their compactness, stability, and ionic selectivity. Research into evaluating the corrosion resistance of rust layers has now expanded to include artificial intelligence, advanced sensors, and big data technologies, making studies more dynamic and efficient. However, there remains a lack of research on the effects of complex atmospheric environments (such as marine-industrial complex environments) and the influence of multiple alloying elements coexisting. Clarifying the impact of each factor is challenging due to potential synergistic effects. Moreover, the conditions required for the formation of integral and stable rust layers are very stringent, and such protective rust layers may not form in harsh environments. Therefore, appropriate protective measures are still strongly recommended. This study specifically discusses the currently available rust stabilization treatment technologies, introducing key technical approaches such as coating technology, spraying technology, and surface reconstruction of the rust layer. These methods are crucial for enhancing the reliability, stability, and applicability of weathering steels. The development of efficient and environmentally friendly rust stabilization treatment technologies represents a promising area for future research.
-
据统计,全世界每90秒钟就有一吨钢铁变成铁锈[1]. 钢铁的腐蚀不仅造成材料减薄,还可能造成穿孔、松动和应力集中,引发力学性能的劣化,最终造成工程结构的失效,甚至引发安全事故. 尽管各种新型耐腐蚀材料的研发速度在加快,钢铁制造业仍是国家工业经济的命脉. 如何应对钢铁腐蚀所造成的材料损失和经济损失,仍是全球密切关注的问题[2].
在恶劣的大气环境中(如海洋大气环境、工业大气环境等),钢铁材料面临严重的腐蚀问题. 通过在普通钢中添加Cu、Cr、Ni等元素制成低合金钢,可以大幅提高钢铁材料的耐蚀性,在免涂装状态下能够延长服役寿命,即为耐候钢(也称耐大气腐蚀钢),是公认的经济性与环保性并存的钢铁材料[3].
耐候钢的耐蚀性能主要得益于表面锈层的保护性能,很大程度上源于其中添加的少量合金元素[4]. 相较于传统的碳钢,它的锈层致密且贴附表面,对O2、H2O与Cl−具有更好的阻碍作用,从而增强耐腐蚀性[5],而且随着暴露时间的增长,耐候钢锈层的耐蚀作用更加明显. 耐候钢在铁路、桥梁、建筑、车辆等许多领域中应用广泛[6]. 耐候钢在大气环境中的耐腐蚀机制研究和旨在提升耐蚀性能的新型耐候钢研发、新型锈层处理技术研发等,一直是科学界及工业界关注的焦点问题.
1. 耐候钢表面锈层
耐候钢已经经历了一百多年的发展历程(如表1). 长期研究表明,耐候钢的腐蚀防护性能主要来自于大气环境中生成的保护性锈层. 经过大气环境中长时间的暴露,耐候钢表面会逐渐形成均匀的致密锈层,具有阳极钝化、离子选择性等特点,从物理层面上阻碍O2、H2O和腐蚀介质的渗入,对于大气环境具有很好的保护作用[7]. 相较而言,普通碳钢表面形成的锈层松散多孔,容易剥落,对钢基体的保护作用甚微.
表 1 耐候钢发展历程Table 1. Development process of weathering steelTime Event 1900 Initial research and development of Cu-containing weathering steels began in the U.S.[8−10] 1933 U.S. Steel introduced Corten-A, a low alloy weathering steel[8−10] 1955 Japan initiated research and development of weathering steel[8−10] 1961 China made initial attempts to produce 16MnCu steel[8−9] 1965 China also experimented with 09CuPTi steel, while Japan constructed its first painted weathering steel bridge[8−9] 1967 China applied weathering steel to test vehicles for the first time, and Japan constructed its first bare weathering steel bridge [8−9] 1969 Germany began using bare weathering steel[8−10] 1972 The UK also started using bare weathering steel[8−10] 1980 Completion of Japan’s third-largest river bridge initially used as a diffraction frame for bridges[8−10] 1984 China established a national standard for highly weatherable structural steel[8−9] 1988 China made an initial attempt to produce NH-35q bridge weathering steel[8−9] 1990 The Xunsi Bridge on the Wuhan-Beijing-Guangzhou Line was completed, marking China’s first weather-resistant steel bridge[8] 1999 China attempted to produce JT series tower mast high-weathering structural steel[8−9] 2003 Efforts were made to develop 550MPa and 770MPa grade high-strength weather-resistant railcars for railway vehicles[8−9] 2012 Q690qENH weathering steel was successfully developed by Anshan Steel[8−9] 2019 China’s first weather-resistant power pylons were put into use, and the Guanting Reservoir Bridge was completed, marking another milestone in China’s weather-resistant bridges[8−9] 2020 The Yarlung Zangbo River Two-Lane Special Bridge was completed, becoming China’s first paint-free, weather-resistant steel bridge[8] 2022 The Fuzhou Xinhongtang Bridge was completed, making it China’s largest weather-resistant steel bridge[8] 2023 China’s first sea-crossing high-speed railway, the Fuzhou—Xiamen High-Speed Railway, was opened, representing the world’s first large-scale cross-sea project using paint-free weathering steel[11] 1.1 锈层的形成过程
耐候钢在大气环境中的腐蚀基于化学或电化学反应,在热力学自发过程中逐渐形成锈层. 腐蚀过程经常在干湿交替条件下进行. 在润湿阶段,基体表面有薄液膜自发生成;在干燥阶段,薄液膜水分蒸发,厚度减小,Cl−的相对浓度增加,导致电导率上升,促进电化学反应[12].
腐蚀初期速度较慢,优先进行局部的选择性腐蚀[13]. 一些耐候钢基体中广泛分布的铁素体和珠光体,分别作为局部的阳极和阴极,铁素体溶解形成小腐蚀坑. 该阶段的腐蚀产物较少,仅在局部腐蚀区域周围沉积,在钢基体上没有连续的完整锈层[14]. 相较而言,贝氏体的空间结构更均匀,电化学活性稳定,更趋向于在整个表面形成较为均匀的锈层[15−16]. 因此,锈层的形成与耐候钢的微观组织结构具有密切关系. 锈层初步形成时,存在大量孔隙,为腐蚀介质的侵入提供了通道,导致腐蚀的加速. 此时锈层的耐腐蚀性较低,且出现锈层开裂和腐蚀的交替进行[17]. 随着锈层的增厚,孔隙中难以蒸发的水分延长了表面的湿润时间,同时抑制物质扩散而导致金属离子在锈层内的积累,促进腐蚀的持续发生. 此外,锈层具有一定的导电性,作为氧化剂,在潮湿条件下促进电化学反应[18]. 随着腐蚀时间的延长,更均匀致密的锈层逐渐积累并形成,表现出对钢基体的保护作用,开始物理阻碍O2、H2O等的渗入,腐蚀速率逐渐降低[19−20]. 除此之外,耐候钢腐蚀产物的成分在锈层形成过程中也会产生显著变化,并影响腐蚀过程,相关内容将在下一章详述.
自耐候钢的概念被提出以来,锈层的形成和演变过程的研究就一直在进行. 当前,随着人工智能(AI)的发展,利用多图像分割与机器学习相结合,通过建模与计算,已可实现表面锈层和锈层形成过程的数字化和模型化,相关研究为锈层动态演变和物相组成的监测提供了全新的发展方向[21].
1.2 锈层的结构
由于耐候钢中添加的合金元素的种类与含量不同,以及大气环境条件的差异性,锈层在不同阶段的形成机制不同,各种疏松或致密的腐蚀产物混合形成的锈层组分和结构往往较复杂,使得锈层防护机制研究难度很大[22]. 大量研究认为,耐候钢的锈层主要分为两层[23−24]. 如图1所示,耐候钢的外锈层与普通碳钢相似,由Fe3O4、γ-FeOOH和β-FeOOH等组成,疏松多孔,结合力差,易脱落. 内锈层由大量无定形化合物、γ-FeOOH和α-FeOOH共同形成,加上合金元素促进内锈层中细晶体的形成与均匀分布,是锈层耐腐蚀性能的主要原因.
近期,有一些研究报道了耐候钢锈层更为精细的结构划分. 在腐蚀性较强的环境中(高Cl−浓度环境),锈层结构可能分为三层:内层为致密α-FeOOH晶粒,中间层为α-FeOOH和β-FeOOH的混合物,最外层为薄层状γ-FeOOH[25]. Yu等[26]针对沿海工业大气条件下不同Ni含量耐候钢的多层锈层结构,创新性地采用拉拔附着力测试的方法分离锈层,报道了以大量稳定相α-FeOOH、Fe3O4为内层,以纤维状γ-FeOOH/β-FeOOH和α-FeOOH为中间层,以大量不稳定相β-FeOOH与γ-FeOOH和少量稳定相α-FeOOH与Fe3O4为外层的锈层结构. 这些研究更加明确了不同形貌腐蚀产物和合金元素对锈层耐蚀性的贡献,这些差异造成锈层各层组分的差异,从而导致各层锈层展现出不同的保护性能. 然而,锈层保护机制与锈层成分、结构的关联仍不清晰,作者团队发展了不同程度破坏锈层的新方法,使得多层结构不同程度暴露于腐蚀介质中,评价了锈层不同程度破损对耐候钢腐蚀规律的影响,强调了锈层完整性对耐候钢的重要作用.
在不同外界环境条件和不同合金元素含量的影响下,锈层的成分和结构及其随时间的形成、演变规律均有所不同. 研究不同因素影响下的锈层保护机制,及锈层防护性能随各因素的变化规律,对耐候钢的研发与应用具有重要意义.
2. 影响耐腐蚀性能的因素
传统的钢材很难形成贴附钢基体的腐蚀产物,在大气环境下得到的锈层也没有致密耐腐蚀的效果. 腐蚀产物能否及时形成保护性的锈层,直接决定了耐候钢的耐蚀性. Cl−、SO2等腐蚀介质对锈层的形成具有非常重要的作用. 此外,pH值、温度[27]、降雨量[28]、位置朝向[29]等外界因素,以及合金元素[30]、结构设计导致的积水滞留[31]、焊缝性质[32]等自身因素,都会影响保护性锈层的形成. 如图2所示为影响耐蚀性的主要因素.
2.1 腐蚀产物的影响
耐候钢锈层中的主要成分与普通碳钢相似,包括结晶锈α-FeOOH和γ-FeOOH、磁铁矿Fe3O4、赤铁矿α-Fe2O3、磁赤铁矿γ-Fe2O3和非晶态等(如表2)[33]. 这些相的组成通常以γ-Fe2O3、Fe3O4、α-FeOOH、γ-FeOOH的顺序在锈层中从内而外分布.
Corrosion product Mineral Color System of crystallization Conductivity Density/(g·cm−3) Note α-FeOOH Goethite Yello Orthorhombic System Insulator 4.30 The most stable phase in the rust layer γ-FeOOH Lepidocrocite Yello Orthorhombic system Insulator 4.10 High electrochemical activity β-FeOOH Akaganite Light brown Tetragonal system Insulator 3.00 Generated in the presence of halogen ions such as Cl− δ-FeOOH Feroxyhyte Brown Amorphous Insulator 3.95 The crystal structure is controversial Fe3O4 Magnetite Black Inverse spinel Conductor 5.20 Great electrical conductivity and provides access to electrons FeO — Black Cubic system Semiconductor 5.50 Generated during high-temperature oxidation α-Fe2O3 Hematite Black Hexagonal system Insulator 5.20 Easily generated during high-temperature oxidation γ-Fe2O3 Maghemite Brown Cubic system Semiconductor 4.88 Easily generated during high-temperature oxidation Fe(OH)2 Marcasite White Hexagonal system Insulator 3.40 The initial phase of corrosion Amorphous — Brown Amorphous — — About 20%–75% cent of the rust layer 其中,耐候钢锈层的保护性主要来源于相对最为稳定的α-FeOOH晶粒,它的含量大致决定了耐候钢锈层的保护性能. 粒径约10 nm的α-FeOOH与Fe3O4堆积,可在锈层内层形成无空隙的纳米颗粒层[37]. 在腐蚀后期,锈层上如果形成孔隙裂痕,α-FeOOH的晶粒也能够聚集在孔隙周边,保证物理屏障的完整性. 随着在大气环境中暴露时间的延长,α-FeOOH也可能转变为γ-Fe2O3、α-Fe2O3和δ-FeOOH等[38],这些腐蚀产物对耐候钢的腐蚀防护也具有一定作用,但保护性低于α-FeOOH. 为了增强耐候钢锈层的保护性,目前很多研究工作集中提升α-FeOOH的防护性能,例如促进α-FeOOH晶粒的减小以提高致密性,促进锈转化以提高α-FeOOH在内层的含量等.
α-FeOOH电化学性能稳定、致密防腐的特性已是普遍共识. 近年来有学者探讨了α-FeOOH锈层的一些非晶相的作用. α-FeOOH与非晶态的无定形物质FeOx(OH)3−2x混合的粘附致密结构对保护机制起着关键性的作用[24],其高聚集结构能够抑制阳极的金属溶解与O2、腐蚀介质向内部扩散,增强耐候钢的耐蚀性[39]. 目前对α-FeOOH的研究多着重于额外添加的合金元素. 如Cr、Ni等,通过取代腐蚀产物中Fe的位置,生成如α-(Fe1−x, Crx)OOH、Fe2CrO4和NiFe2O4等产物,改善锈层内部结构,细化晶粒、形成新构型和增强产物的离子选择性,阻止腐蚀介质的侵入.
γ-FeOOH是腐蚀过程中最初始的产物,在干湿循环中不断地转化和再生,主要形成结构疏松的外层,为腐蚀介质的渗入提供空间,不利于致密锈层的形成. 高电化学活性使其作为阴极去极化剂,其浓度大小和分布均匀影响着锈层的保护性[40]. γ-FeOOH可能转化为α-FeOOH,也能够还原形成Fe3O4和γ-Fe2O3.
Fe3O4的稳定性稍高于γ-FeOOH,属于反尖晶石面心立方结构,八面体位中的Fe2+、Fe3+的电子可以自由迁移,由此而得的良好导电性能够提供足够的电子输送通道,促进锈层中的氧化还原反应. 热力学和动力学稳定性以及致密结构,使其对锈层具有一定的保护性[41]. 然而,也有研究表明,Fe3O4是一种未完全氧化的物质,抑制致密锈层的形成[7]. 对Fe3O4的保护性能仍需进一步的探讨.
在温度升高和Cl−质量分数上升(不小于5%)的条件下,Cl−有可能促进形成不利于锈层保护性能的β-FeOOH[42]. β-FeOOH有比γ-FeOOH更强的还原性,在锈层形成初期未转变为稳定的α-FeOOH,而是已经快速还原为Fe3O4,从而导致锈层不均匀和孔隙的存在[43]. 在腐蚀过程的初期,β-FeOOH在阴极还原反应中作为主要反应物,可能导致腐蚀速率快速升高,但通过晶粒细化[44]或添加适量的${\mathrm{SO}}_4^{2-} $[45]可对其进行抑制.
2.2 大气环境的影响
耐候钢锈层的成分与结构主要受到环境条件的影响,在不同的大气环境中,随温度、相对湿度、pH值等环境变量,以及各类无机盐、电解质、微生物[46−47]等因素而变化. 研究者们通常把大气环境分为农村大气、城市大气、工业大气、海洋大气等[48]. 相较于农村环境和城市大气,工业环境中的耐候钢腐蚀速率更高[49]. 这是由于工业环境中存在大量的SO2、NOx、CO2和固体烟尘颗粒等,在长期腐蚀过程中破坏锈层的保护性[50]. 随着环境污染物的日渐增长,含硫石油制品在使用后产生的SO2是工业大气环境中腐蚀的主要因素[51−52]. SO2能够在水中大量溶解形成H2SO4,参与基体或锈层上的反应,腐蚀产物FeSO4水解会导致pH值的下降,使腐蚀持续发生,加快腐蚀速率[53]. SO2的促进作用尤其体现在腐蚀初期,在钢基体表面形成微酸性的含Cl−电解质层,促进电化学反应[54−55]. 硫化物与钢基体形成微电池,通常会优先溶解并扩展形成点蚀. 富含SO2的工业大气环境下,极易导致材料的穿孔渗漏,带来极大的损失.
我国幅员辽阔,各个海域的气候数据迥然不同(如表3、4). 恶劣的海洋大气环境中,存在着高湿、高温、高辐照、高盐量等诸多问题,复杂的协同作用给耐候钢的腐蚀防护提出了挑战[56−57]. 当湿度较高时,钢材表面电解质液膜的存在促使腐蚀加速. 即便大气中没有污染物的存在,在80%相对湿度(RH)以上的湿度环境下,腐蚀速率也会急剧增长[58]. 温度的变化在大气腐蚀中也起到重要作用. 高温条件下,O2浓度降低,电解质的溶解度上升,液膜导电性增强,各种腐蚀反应的活度增加[59]. 在日照时间长的地区,辐照促进液膜的蒸发而抑制腐蚀. 如FeOOH、FeO、CuO等腐蚀产物具有半导体性质,紫外线的照射通过光伏效应促进阴极去极化反应和阳极溶解,综合影响腐蚀过程[60].
表 3 各个海洋大气试验站的环境数据[65]Table 3. Environmental data from different marine atmosphere experimental stations[65]Experimental station Average temperature/℃ Relative humidity (RH)/% Annual wet time/h Annual rainfall time/mm Annual sunshine time/h Cl− deposition rate/(mg·dm−2·d−1) SO2 deposition rate/(mg·dm−2·d−1) Rainwater pH Qingdao 12.5 71 4049 643 2078 0.250 1.184 6.10 Zhoushan 16.7 75 5251 1317 1366 0.026 0.041 4.45 Qionghai 24.5 86 6314 1881 2116 0.784 0.150 6.90 Wanning 24.6 86 6736 1563 2043 0.387 0.060 5.00 Xisha 27.0 82 5600 1526 2675 1.123 <0.001 6.50 Ocean Average annual temperature/℃ Days over
30 ℃/dAverage annual
relative humidity/%Average annual rainfall/mm Average annual salt spray concentration/(mg·m−3) Total annual radiation/(MJ·m−2) Bohai Sea 10.1 6.3 68 656.0 0.0389 4707.17 Yellow Sea 11.9 22.4 74 777.4 0.1381 4089.02 East China Sea 16.3 53.2 76 1201.2 0.1180 4353.28 South China Sea 27.5 160.8 79 1600.0 0.1275 6850.13 盐度是估算腐蚀程度的主要判据和评价耐候钢性能的重要参考[61]. 与H+相结合的FeOOH等腐蚀产物带有正电,会吸引Cl−进入腐蚀产物,并降低pH值,从而加剧腐蚀. Cl−与O2的共同吸附破坏表面的腐蚀产物,溶解形成电解质膜,促进腐蚀过程[62]. 此外,腐蚀产物的粒径随着盐度及腐蚀程度的增加而增大,导致锈层疏松,进一步的促进腐蚀的发生[54]. 以往的研究发现,在腐蚀产物中,稳定的α-FeOOH与较活泼的γ-FeOOH、β-FeOOH、Fe3O4的质量比(α/γ*)是锈层的防护能力指数,能够作为海洋大气中判断锈层保护性的重要指标[63−64]. 一般来说,Cl−浓度更高的环境下α/γ*比值会减小,腐蚀速率增加. 腐蚀时间延长,α/γ*比值增大,锈层的保护性能也随之增加.
传统研究方法主要基于实验室模拟环境或单一的野外暴露试验环境积累的腐蚀数据,而利用先进传感器和大数据技术,基于多地区试验站收集的环境信息和腐蚀数据,可以实现不同环境因素对耐候钢锈层影响程度的运算,这也是目前研究耐候钢锈层动态演变规律的最新方法. 研究表明,通过数据建模可以推演复杂环境中各因素的影响,环境的高湿度显著延长锈层的润湿时间,环境盐度的升高会导致锈层中α-FeOOH含量的降低,进而造成锈层防护性能的下降,而环境温度的上升有助于锈层保护性的增强[67]. 因此,多环境因素的影响较为复杂. 此外,随着人类活动与工业活动的发展,大气环境的腐蚀性组分也变得越来越复杂,沿海地区环境中不仅存在大量的Cl−,还存在大量SO2、NOx等物质,这类典型的复合型工业大气中的腐蚀介质会对耐候钢进行侵蚀,水溶性盐和酸性污染物促使表面形成电解质膜,降低pH值,促进锈层溶解,催化电化学腐蚀[68−69]. 然而,目前针对耐候钢在复合型大气环境中的锈层研究还比较少,且研究难度大,难以厘清各因素的单独和耦合影响,但针对复合条件下的腐蚀规律研究具有非常重要的意义. 例如,在海洋–工业大气环境复合条件中,NaCl与SO2存在协同作用,对锈层构成复杂影响,导致腐蚀速率远远高于两个单一因素的叠加,这种耦合作用的具体机制和应对措施需要引起关注.
2.3 合金元素的影响
耐候钢锈层的形成与其中添加的合金元素密切相关[47],如Cu、Cr、Ni等均可对Cl−产生不同的抑制作用,有利于耐腐蚀性的提高[70]. 它们主要富集在内层锈层,有利于形成均匀的非晶相,细化腐蚀产物颗粒,在一定条件下还有可能形成纳米网状结构,阻拦腐蚀介质渗入基体. 甚至在多种元素的协同作用下,同时提高力学强度和疲劳强度[71]等性能.
在早期研究工作中,主要研究对象为Cu在钢铁材料中的单独填加. 耐候钢的首位研究者Buck[72]报道,仅0.04%(质量分数)的合金Cu就可以显著提高钢的耐蚀性,且随着浓度的提升,耐蚀性进一步增加,在超过0.25%(质量分数)后Cu对耐蚀性的提升效果显著降低. 在此基础上,研究认为单添加Cu的理想质量分数在0.05%~0.20%范围内[73],更高浓度的Cu反而可能引起耐蚀性的下降. 在多种合金元素加入耐候钢的条件下,Cu元素提升耐蚀性的有效浓度范围更加广泛. 如在NiMo钢中填加质量分数1.20%的Cu元素,Cu富集后的析出相(ε-Cu)周围会产生应变,引起耐候钢基体的微观结构变化和弹性畸变,增强腐蚀敏感性,有利于初期锈层的快速形成,同时促进Fe的活性溶解过程;而固溶态(s-Cu)的溶解有利于CuFeO2的形成,从而增强锈层的热力学稳定性,提升锈层的防护作用[74]. 美国ASTM G101-04(2020)《低合金耐大气腐蚀评估的标准指南》建议,低合金钢中Cu元素的质量分数范围一般在0.30%~1.50%左右,能够对耐蚀性产生显著影响,这与上述研究具有一致性.
Cr元素在耐候钢中也具有重要作用,其填加质量分数范围大致在0.10%~5.00%范围内. Cr元素有利于γ-FeOOH转变为α-FeOOH[75]. 对不含Cr、含0.35% Cr、含0.85% Cr的耐候钢研究表明,随着Cr含量升高,表面腐蚀坑的大小和深浅也有减小[76]. 针对质量分数0.1%~0.5%的Cr含量的耐候钢,研究发现锈层中的Cr元素浓度分布不均,在较低Cr质量分数(1.00%~3.00%)的局部锈层区域,Cr表现出促进锈层形成纳米α-FeOOH颗粒的作用,有利于致密锈层的生成;在较高Cr质量分数(>15.00%)的局部锈层区域,Cr表现出抑制α-FeOOH结晶的作用,促进形成无定形的羟基氧化铁,其致密结构既能延缓金属阳极溶解,又能延缓阴极O2扩散[24, 40, 77],在内部致密锈层上的富Cr区域(质量分数15.40%)中高含量的Cr3+同时促进生成非晶态Cr2O3,与无定形羟基氧化铁以及纳米晶粒混合,使内锈层致密且无孔隙[24, 77]. 在腐蚀初期,富Cr局部锈层区域的Cr3+在钢–锈界面和锈层缺陷处富集,水解生成不稳定的CrO(OH)凝胶. 后期与O2−配位,分布在FeO3(OH)3八面体网络空位的双链中,使Cr3+形成具有阳离子选择性的α-(Fe1−x, Crx)OOH,这种超细纳米晶粒取代α-FeOOH在内锈层中紧凑填充,实现锈层防护性能的提升[24]. 在耐候钢基体中存在更高质量分数的Cr时(4.64%),Cr的氧化物则可能抑制还原反应和Fe2+的形成,从而导致干燥阶段的腐蚀速率降低,减缓腐蚀[78].
传统耐候钢的Ni质量分数在0.20%~1.50%范围内,而更高性能耐候钢的Ni质量分数为3.00%~3.55%[79]. Ni元素的增加主要影响的是内层的α-FeOOH等腐蚀产物,有利于促进锈层粘结强度的提高和保护性锈层的形成,减少β-FeOOH的形成,促进腐蚀产物的细化从而得到致密锈层[80]. 在Ni质量分数较低(0.20%)时,Ni元素以NiO和Ni(OH)2的形态存在;质量分数超过3.00%后,Ni渗入Fe3O4中生成大量NiFe2O4,可使锈层具有阳离子选择性,排斥腐蚀介质,增强内锈层致密性[79, 81]. NiFe2O4颗粒也可作为成核点,细化氧化铁和氢氧化铁,提高Fe3O4的稳定性,从而改善锈层结构[82]. 此外,NiFe2O4具有电负性效应,它的积聚能够提高锈层的电负性和腐蚀电位,阻碍Cl−对锈层的侵入[83],但随着恶劣环境中Cl−浓度的上升,NiFe2O4的形成会受到抑制[84].
综上,较低含量的Cr、Cu、Ni合金元素促进纳米α-FeOOH晶粒的生成[85],进而有效阻止H2O和O2渗入钢基体,而含量升高后会导致非晶相的生成[24, 86−87],在致密锈层中对腐蚀介质有较高的阻挡作用. Cu、Cr、Ni等合金元素不仅可以单独作用于耐候钢锈层,也可形成交互作用,并可能与其他元素形成协同作用,能够综合改善耐候钢的性能[88−90]. Cu和Cr具有协同作用,在内锈层中以CuO和Cr2O3的形式富集,主要保护耐候钢基体;同时微量的NiO均匀分布在锈层中,显著促进腐蚀产物的结晶,提高锈层的稳定性[91]. Cu与Ni也具有协同作用. 含Ni耐候钢中存在少量Cu的条件下,CuO和Ni化合物的富集填补腐蚀产物的孔隙,使锈层致密化,并抑制O2向钢基体的扩散[92−93]. Cu和Ni溶解形成的中间化合物CuO和NiO可以提供成核位点,促进α-FeOOH的形成[94].
合金元素大量分布于锈层内膜中,而Cl−主要存在于锈层外膜中[84]. Ni、Cu、Mo等元素在锈层中存在协同作用[7, 95−96]. CuFeO2、NiFe2O4等电负性物质的生成,可以吸收Cu2+、Ni2+和Mo4+等正离子,促进生成相应的化合物,能够为腐蚀产物提供成核点,促进锈层的形成并提高锈层致密性. Cu与Sb的协同作用促进形成CuFeO2、NiFe2O4等电负性尖晶石氧化物,Sb2O3、Sb2O5等耐酸氧化物[88]. Sb的氧化物提高了耐蚀性[97−98],形成过程中也会消耗H+,降低环境酸性,抑制氧化还原反应[99].
在传统的Cr、Cu、Ni等资源日益消耗的背景下,近年来一些研究报道了能够提升耐候钢锈层保护性能的其他元素,在含量非常低的情况下就能够提供与传统合金元素相当水平甚至更好的防护性能,并能够在一定程度上实现成本的降低. 有研究表明,质量分数仅0.073%的P所形成的${\mathrm{PO}}_4^{3-} $和一些磷酸盐就能够在腐蚀初期减弱阳极极化,加速钢的均匀溶解,快速形成锈层;磷酸盐均匀覆盖在钢基体表面的裂纹孔洞中,阻碍H2O和O2的进一步渗入[100]. 含Si(质量分数0.48%)的耐候钢能够抑制腐蚀产物的生长,使锈层提前进入稳定状态. 低成本的Si生成细小氧化物,能够进入腐蚀产物的晶体间隙进行细化,从而促进保护性锈层的形成,起到物理屏障的作用[101]. 同时与Fe3O4反应,在锈层裂纹和缺陷周围生成SiO2三维网络结构,对锈层进行有效地修复与填充[102−104]. 此外,含有质量分数为0.40% Sn的耐候钢中,锈层中的SnO和SnO2可以增大锈层密度,填充锈层的裂纹缺陷;稳定的SnO2有助于耐候钢表面形成致密氧化膜,抑制钢的进一步溶解,降低腐蚀速率[105]. 在含Cr耐候钢中加入0.10%质量分数的Mo,主要形成纳米MoO2和MoO3,为腐蚀产物提供成核位点,促进γ-FeOOH转变为α-FeOOH,同时可以促进Cr、Cu、Ni进一步转化为Cr2O3、Cu2O和NiFe2O4等更稳定的产物[106]. 还有研究报道,Nb2O5和NbO2等Nb的氧化物具有热力学稳定性,在Nb质量分数低至
0.0235 %~0.0458 %时,Nb的氧化物就能够与γ-FeOOH和γ-Fe2O3形成致密的氧化膜,阻碍腐蚀的进行[107].在长期腐蚀过程中,合金元素大都具有促进锈层的比表面积增加、提高锈层与钢基体的附着力等作用. 然而,合金元素也带来了一些问题. 多种合金元素的同时存在,可能会形成氧化物(如Al2O3、CaO)、硫化物(如MnS、CaS)和(Ti,Nb)N沉淀物等组成的复合夹杂物[108],会对周围基体的微观结构、材料成分造成影响. 利用稀土对夹杂物进行改性,夹杂物与钢基体间的稀土元素优先进行腐蚀,可以显著抑制点蚀从亚稳态向稳态的转变,抑制腐蚀坑的继续扩展[109],稀土改性耐候钢对耐蚀性的改善问题目前仍是一个研究热点. 然而,耐候钢表面夹杂物还会改变锈层初期的形成和演变规律,这与夹杂物的分布、形貌和电化学特性均具有密切关系,但目前针对夹杂物对锈层保护性的影响尚无报道,值得关注.
3. 锈层稳定化处理
对耐候钢的防护通常有防腐涂料和表面锈层稳定化处理两种方式. 传统涂料的成本高、操作复杂,且背离了耐候钢的设计初衷. 此外,传统的有机溶剂涂料以大量的有机化合物作为成分,会对大气环境造成严重污染. 表面稳定化处理能够发挥耐候钢锈层本身的防护性能,对于耐候钢的广泛应用具有重要意义.
理想条件下,耐候钢应以未涂装状态进行使用,充分发挥致密锈层的防护功能,减少施加涂层所需的人力物力. 但在实际使用时,自然形成锈层所需的时间至少有3~5年之久. 随着耐候钢广泛应用在桥梁、高铁等复杂多变的服役环境中,在热带潮湿或工厂污染的严酷环境中,Cl−和SO2等污染物的浓度过高,耐候钢甚至难以形成完整稳定的锈层[110]. 耐候钢形成理想的保护性锈层,需要干湿循环作用(湿润期较短)、低腐蚀性大气环境(较低浓度的Cl−与SO2)等条件要求,在实际工程中,结构设计也会影响锈层的形成,如易出现积水的孔隙空腔等[111]. 因此,致密稳定的保护性锈层的形成容易受到诸多外部环境因素和内部结构因素的限制[112]. 为了解决稳定锈层形成前可能被各种限制因素影响的问题(如发生锈液飞散和锈层污染等),确保耐候钢能够稳妥地形成保护性致密锈层,需要采取相应的锈层稳定化防护措施.
日本处于典型海洋大气环境,耐候钢面临极其严重的腐蚀问题,裸露条件下甚至不能形成稳定的锈层. 为此,日本最早于1955年开始对耐候钢进行锈层稳定化处理的尝试,在耐候钢投入使用之前进行表面涂膜预处理,缩短保护性锈层的形成时间[113−114]. 如川崎制铁公司的RS涂膜[115]、NKK公司的CUPTEN涂膜[114]等,是日本较为成熟的涂膜技术成果. 例如,研究发现,利用Cr2(SO4)3、聚乙烯醇缩丁醛和颜料等组成的表面处理剂,能够使Cr2(SO4)3解离出${\mathrm{SO}}_4^{2-} $而加速腐蚀,同时Cr3+置换生成α-(Fe1−x,Crx)OOH,能够促进耐候钢表面在短时间内生成稳定的锈层[116]. 质量分数3.5%的Cr2(SO4)3溶液薄层即可抑制钢的溶解,加速致密锈层的形成[117]. 在日本成功应用耐候钢表面锈层稳定化技术之后,更多国家开始进行更广泛的尝试. 如美国匹兹堡的钢塔在裸露应用时,锈液的流散导致周围建筑物的染色,造成严重污染,因此后期在表面喷水形成保护性锈层,喷水处理虽然环保经济,操作简单,但需考虑局部环境、喷雾循环和锈层演变等影响因素,这些因素均会显著影响锈层稳定化进程和锈层的防护性能[118−119]. 意大利的海滨实验室在耐候钢表面均匀喷涂HCl水溶液形成预锈层,再将蜂蜡涂至表面,通过对比裸露钢、预锈层处理和预锈层/涂蜡处理的耐候钢在雨水中的暴露腐蚀行为,发现预锈层具有一定保护作用但并不稳定,而涂蜡操作能够对锈层进行一定的防护,但对锈层的耐蚀性没有明显的提升[120]. 目前已在实际工程中应用的锈层稳定化方法相对简单,效果并不理想. 总体而言,目前已有报道的锈层稳定化技术主要基于涂膜和喷淋技术.
针对涂膜处理技术,要求在其投入使用之前便在耐候钢表面进行处理,使其形成一层透气透水的防护膜,一方面可以减少腐蚀初期锈液的流挂,防止其飞溅污染影响美观;另一方面可以加速生成完整致密的保护性锈层,在防护膜下使耐候钢安全进入依靠锈层即可实现自我保护的状态. 表面稳定化处理的重点在于缩短保护性锈层形成的时间,利用合适的金属盐或金属氧化物,促进生成更多的α-FeOOH,快速获得稳定锈层;同时选择合适的有机成膜剂,快速形成透气透水涂膜,并保证促进锈层形成的有效成分(金属盐或金属氧化物)快速稳定地附着在耐候钢表面. 稳定化涂膜处理技术主要包括:
(1)耐候性涂膜处理[121]:以无机复合磷酸盐膜作为底膜,促进稳定化锈层形成;底膜之上再涂覆丙烯涂料形成多孔栅格,透气透水,防止流液.
(2)氧化物涂膜处理[122]:在有机成膜剂中加入疏水性载色剂、氧化物与促进生锈的添加剂,涂刷形成有机薄膜. 在腐蚀初期作为保护膜,形成稳定锈层后逐渐脱落.
(3)氧化铁-磷酸盐系处理[8]:底层膜中含有磷酸盐、氧化铁,外膜是含氧化铁的丙烯树脂. 除了双层复合膜对腐蚀介质的物理阻碍,磷酸盐可促进Fe2+沉淀和氧化,进而加速转化为α-FeOOH.
(4)环保型稳定剂处理[123]:含Cr稳定剂处理主要利用Cr元素细化晶粒,降低腐蚀敏感性,其中Cr2(SO4)3、SrCrO4、BaCrO4等成分对环境污染严重. 在绿色环保的要求下,日本川崎制铁公司开发的环保型稳定剂选择微细铁氧化物作为形核剂,钼酸分散形成难溶性钼酸盐作为缓蚀剂,采用丁醛树脂成膜,促进保护性锈层的形成.
区别于上述涂膜处理技术以外,还有一些基于喷淋方法的锈层稳定化技术,通过简单的表面喷淋即可实现锈层稳定化,操作更加便捷,施工效率可得到大幅提升,可以更加广泛的应用. 如在NiMn钢中填加质量分数1.02%的Cu元素,用质量分数0.3% CuCl2的溶液进行表面喷淋处理,Cu2+与Fe发生置换,在钢表面形成掺杂CuO和Cu2O的预腐蚀锈层,可以有效阻止Cl−向钢基体的渗透[124]. 喷淋溶液的成分包括且不限于下方所述内容.
(1)促进剂:含Cr、Ni、Cu等金属元素的盐类,如Cr2(SO4)3、NiSO4等,通过有效合金元素在耐候钢表面的富集,实现锈层稳定化的目的,这些元素对致密锈层形成过程的积极作用已在第三章进行详述. 但是,铬盐会对环境造成危害,与绿色发展理念不符,需要寻找代替铬盐的促进剂成分[125].
(2)缓蚀剂:磷酸盐可以促进在锈层中快速形成难溶磷化膜,以起到增强锈层耐蚀性的作用[126].
(3)诱导剂:铁氧化物如Fe3O4、γ-FeOOH等作为形核剂,可以诱导α-FeOOH的快速形成,促进稳定锈层的形成[122].
近年来,研究人员报道了一些水基的新型喷淋液. 例如,以水为溶剂,以CuSO4、FeSO4、NaHSO3等可溶性盐为溶质,与均匀剂、连接剂和单宁酸等混合,将该混合液均匀喷淋在耐候钢表面,自然干燥后会形成一层稳定的化学转化层,对耐候钢起到保护作用的同时促进其表面快速生成致密均匀的锈层[127−129]. 另有研究人员发现,同样以水为溶剂,将Cr(OH)SO4、Cu(NO3)2等可溶性盐与稳定剂混合,干燥后形成转化层,也可实现锈层稳定化,其中Cr元素有利于加速α-FeOOH的形成,Cu元素有利于促进锈层致密和缺陷愈合,稳定剂可增强涂层与基体的结合[129]. 含Cr、Cu的金属盐不会改变腐蚀产物的种类,但会使α-FeOOH的比例增大,而生成的α-(Fe1−x, Crx)OOH化合物微粒集中在基体和锈层的结合处,可以促进致密性的提高[130]. 以水为基本溶剂,代替传统的有机溶剂,在很大程度上提高了锈层稳定化技术的环境友好性,有望获得更好的发展前景. 除此之外,研究人员最新实现了一种通过溶胶凝胶法在锈层上合成SiO2纳米颗粒构建纳米凸起的技术路线,形成的锈膜具有疏水性,不仅有优异的耐蚀性和稳定性,还能够通过自清洁减少污染[112].
锈层稳定化处理技术具有广阔的应用前景,但目前对于耐候钢锈层稳定化的处理技术还未有统一标准,各种技术路线均具有不同的优势和不足,未来的研发方向将主要集中在工艺方法简单、稳定时间快、环境友好等方面.
4. 结论与展望
耐候钢可在表面自然生成锈层,能够提供一定的腐蚀防护性能. 免涂装和免后期维护的特点使耐候钢的应用具有广阔前景. 本文的结论与展望可概括为如下几点:
(1)本文详细阐述了耐候钢的锈层形成机制和锈层特性,初期锈层的形成主要依赖于耐候钢在大气环境中的局部腐蚀萌生与发展,而成熟锈层具有复层结构,目前已有研究报道了精细化分的锈层多层结构,并进一步明确了各层对锈层耐蚀性的贡献.
(2)合金元素对锈层的耐蚀性具有重要作用,一些元素的填加能够催化腐蚀产物生成、促进锈层形核、增强锈层致密性和粘结强度等.
(3)目前人工智能、新型传感器和大数据技术已经应用于耐候钢锈层的研究,在传统研究方向上拓展了新的研究方向和研究方法. 然而,针对大气环境的复杂性以及多种合金元素共存的影响等方面尚存在不足,关于这些复杂因素的影响,需要借助新的研究手段.
(4)耐候钢的长期耐蚀性是制约其发展的关键因素,耐候钢锈层对于其耐蚀性至关重要,而锈层的稳定性是关键手段,目前该技术尚无明确标准,研究比较分散,有防护膜涂膜、水基喷淋液和锈层表面重构等若干种技术形式,但仍未形成具有明显优势的技术路线. 工艺简单、成本低廉、绿色环保等是锈层稳定化技术在未来发展中需要重点关注的问题.
-
表 1 耐候钢发展历程
Table 1 Development process of weathering steel
Time Event 1900 Initial research and development of Cu-containing weathering steels began in the U.S.[8−10] 1933 U.S. Steel introduced Corten-A, a low alloy weathering steel[8−10] 1955 Japan initiated research and development of weathering steel[8−10] 1961 China made initial attempts to produce 16MnCu steel[8−9] 1965 China also experimented with 09CuPTi steel, while Japan constructed its first painted weathering steel bridge[8−9] 1967 China applied weathering steel to test vehicles for the first time, and Japan constructed its first bare weathering steel bridge [8−9] 1969 Germany began using bare weathering steel[8−10] 1972 The UK also started using bare weathering steel[8−10] 1980 Completion of Japan’s third-largest river bridge initially used as a diffraction frame for bridges[8−10] 1984 China established a national standard for highly weatherable structural steel[8−9] 1988 China made an initial attempt to produce NH-35q bridge weathering steel[8−9] 1990 The Xunsi Bridge on the Wuhan-Beijing-Guangzhou Line was completed, marking China’s first weather-resistant steel bridge[8] 1999 China attempted to produce JT series tower mast high-weathering structural steel[8−9] 2003 Efforts were made to develop 550MPa and 770MPa grade high-strength weather-resistant railcars for railway vehicles[8−9] 2012 Q690qENH weathering steel was successfully developed by Anshan Steel[8−9] 2019 China’s first weather-resistant power pylons were put into use, and the Guanting Reservoir Bridge was completed, marking another milestone in China’s weather-resistant bridges[8−9] 2020 The Yarlung Zangbo River Two-Lane Special Bridge was completed, becoming China’s first paint-free, weather-resistant steel bridge[8] 2022 The Fuzhou Xinhongtang Bridge was completed, making it China’s largest weather-resistant steel bridge[8] 2023 China’s first sea-crossing high-speed railway, the Fuzhou—Xiamen High-Speed Railway, was opened, representing the world’s first large-scale cross-sea project using paint-free weathering steel[11] Corrosion product Mineral Color System of crystallization Conductivity Density/(g·cm−3) Note α-FeOOH Goethite Yello Orthorhombic System Insulator 4.30 The most stable phase in the rust layer γ-FeOOH Lepidocrocite Yello Orthorhombic system Insulator 4.10 High electrochemical activity β-FeOOH Akaganite Light brown Tetragonal system Insulator 3.00 Generated in the presence of halogen ions such as Cl− δ-FeOOH Feroxyhyte Brown Amorphous Insulator 3.95 The crystal structure is controversial Fe3O4 Magnetite Black Inverse spinel Conductor 5.20 Great electrical conductivity and provides access to electrons FeO — Black Cubic system Semiconductor 5.50 Generated during high-temperature oxidation α-Fe2O3 Hematite Black Hexagonal system Insulator 5.20 Easily generated during high-temperature oxidation γ-Fe2O3 Maghemite Brown Cubic system Semiconductor 4.88 Easily generated during high-temperature oxidation Fe(OH)2 Marcasite White Hexagonal system Insulator 3.40 The initial phase of corrosion Amorphous — Brown Amorphous — — About 20%–75% cent of the rust layer 表 3 各个海洋大气试验站的环境数据[65]
Table 3 Environmental data from different marine atmosphere experimental stations[65]
Experimental station Average temperature/℃ Relative humidity (RH)/% Annual wet time/h Annual rainfall time/mm Annual sunshine time/h Cl− deposition rate/(mg·dm−2·d−1) SO2 deposition rate/(mg·dm−2·d−1) Rainwater pH Qingdao 12.5 71 4049 643 2078 0.250 1.184 6.10 Zhoushan 16.7 75 5251 1317 1366 0.026 0.041 4.45 Qionghai 24.5 86 6314 1881 2116 0.784 0.150 6.90 Wanning 24.6 86 6736 1563 2043 0.387 0.060 5.00 Xisha 27.0 82 5600 1526 2675 1.123 <0.001 6.50 Ocean Average annual temperature/℃ Days over
30 ℃/dAverage annual
relative humidity/%Average annual rainfall/mm Average annual salt spray concentration/(mg·m−3) Total annual radiation/(MJ·m−2) Bohai Sea 10.1 6.3 68 656.0 0.0389 4707.17 Yellow Sea 11.9 22.4 74 777.4 0.1381 4089.02 East China Sea 16.3 53.2 76 1201.2 0.1180 4353.28 South China Sea 27.5 160.8 79 1600.0 0.1275 6850.13 -
[1] 侯保荣. 中国腐蚀成本. 北京:科学出版社, 2017 Hou B R. The Cost of Corrosion in China. Beijing: Science Press, 2017
[2] Xu W C, Zhang R Y, Duan J Z, et al. Corrosion is a global menace to crucial infrastructure—act to stop the rot now. Nature, 2024, 629: 41
[3] Herting G, Virolainen E, Odnevall I. Patina formation and diffuse dispersion of alloying metals from weathering steels at urban atmospheric conditions—a combined laboratory and field investigation. Mater Corros, 2024, 75(10): 1282 doi: 10.1002/maco.202414430
[4] Zhao J B, Wang P X, Ma H C, et al. Essential role of Si in enhancing corrosion resistance of high strength low alloy steels in marine environment. J Mater Res Technol, 2024, 30: 3328 doi: 10.1016/j.jmrt.2024.04.108
[5] Bernardi E, Vassura I, Raffo S, et al. Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release. Constr Build Mater, 2020, 236: 117515 doi: 10.1016/j.conbuildmat.2019.117515
[6] Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review. Corros Sci, 2013, 77: 6 doi: 10.1016/j.corsci.2013.08.021
[7] Zhang T Y, Liu W, Chen L J, et al. On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations. Corros Sci, 2021, 192: 109851 doi: 10.1016/j.corsci.2021.109851
[8] 阳建君, 柯佳荣, 范才河, 等. 耐候钢锈层稳定化处理技术研究现状. 包装学报, 2023, 15(6):99 Yang J J, Ke J R, Fan C H, et al. Research status of rust layer stabilization treatment technology for weathering steel. Packag J, 2023, 15(6): 99
[9] 王悦. 低碳钢及耐候钢在典型大气环境下初期锈层演化研究[学位论文]. 合肥:中国科学技术大学, 2022 Wang Y. Study on the Initial Rust Evolution of Mild Steel and Weathering Steel in Typical Atmospheric Environments [Dissertation]. Hefei: University of Science and Technology of China, 2022
[10] 高新亮. 耐候桥梁钢成分设计与组织性能研究[学位论文]. 沈阳:东北大学, 2013 Gao X L. Compositions Design, Microstructures and Properties of Weathering Bridge Steel [Dissertation]. Shenyang: Northeastern University, 2013
[11] 张真齐. 攻克多项技术难题 中国首条跨海高铁开通[N/OL]. 中国青年报(2023-10-12) [2024-07-12]. https://zqb.cyol.com/html/2023-10/12/nw.D110000zgqnb_20231012_2-12.htm Zhang Z Q. Overcoming a number of technical difficulties China’s first cross-sea high-speed railway opens[N/OL]. China Youth Daily (2023-10-12) [2024-07-12]. https://zqb.cyol.com/html/2023-10/12/nw.D110000zgqnb_20231012_2-12.htm
[12] Stratmann M, Müller J. The mechanism of the oxygen reduction on rust-covered metal substrates. Corros Sci, 1994, 36(2): 327 doi: 10.1016/0010-938X(94)90161-9
[13] Kazum O, Bobby Kannan M, Beladi H, et al. Aqueous corrosion performance of nanostructured bainitic steel. Mater Des, 2014, 54: 67 doi: 10.1016/j.matdes.2013.08.015
[14] Yang W J, Liu W, Zhang T Y, et al. Improving corrosion resistance of 3Ni weathering steel in simulated tropical marine atmosphere via changing microstructure. J Mater Eng Perform, 2022, 31(10): 7795 doi: 10.1007/s11665-022-06854-w
[15] Wang Z H, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment. J Mater Res Technol, 2021, 10: 306 doi: 10.1016/j.jmrt.2020.11.096
[16] Sun Y P, Liu W, Sun Z T, et al. Optimizing microstructure for enhanced atmospheric corrosion resistance of a novel Ni–Mo weathering steel: A field exposure study in Thailand’s tropical marine environment. Vacuum, 2024, 221: 112876 doi: 10.1016/j.vacuum.2023.112876
[17] Zhou L J, Yang S W. Investigation on crack propagation in band-like rust layers on weathering steel. Constr Build Mater, 2021, 281: 122564 doi: 10.1016/j.conbuildmat.2021.122564
[18] Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles. Corros Sci, 2014, 82: 165 doi: 10.1016/j.corsci.2014.01.016
[19] Guo Y B, Li C, Liu Y C, et al. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution. Int J Miner Metall Mater, 2015, 22(6): 604 doi: 10.1007/s12613-015-1113-z
[20] Wang P X, Wang P J, Li Q, et al. Study of rust layer evolution in Q345 weathering steel utilizing electric resistance probes. Corros Sci, 2023, 225: 111595 doi: 10.1016/j.corsci.2023.111595
[21] Wang B Q, Liu L G, Cheng X Q, et al. Advanced multi-image segmentation-based machine learning modeling strategy for corrosion prediction and rust layer performance evaluation of weathering steel. Corros Sci, 2024, 237: 112334 doi: 10.1016/j.corsci.2024.112334
[22] Chico B, Alcántara J, Pino E, et al. Rust exfoliation on carbon steels in chloride-rich atmospheres. Corros Rev, 2015, 33(5): 263 doi: 10.1515/corrrev-2015-0025
[23] Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America. ISIJ Int, 1998, 38(3): 285 doi: 10.2355/isijinternational.38.285
[24] Wang Y F, Li J G, Wang Q F, et al. Some new discoveries on the structure of the rust layer of weathering steel in a simulated industrial atmosphere by STEM–EDS and HRTEM. Corros Sci, 2021, 183: 109322 doi: 10.1016/j.corsci.2021.109322
[25] Wang Y F, Li J G, Zhang L, et al. Structure of the rust layer of weathering steel in A high chloride environment: A detailed characterization via HRTEM, STEM–EDS, and FIB–SEM. Corros Sci, 2020, 177: 108997 doi: 10.1016/j.corsci.2020.108997
[26] Yu Q, Yang X Y, Dong W Y, et al. Layer-by-layer investigation of the multilayer corrosion products for different Ni content weathering steel via a novel Pull-off testing. Corros Sci, 2022, 195: 109988 doi: 10.1016/j.corsci.2021.109988
[27] Cemin C. Study on high temperature oxidation behavior of silicon-containing weathering steel. OAJRC Mater Sci, 2022, 3(1): 1
[28] Palsson N S, Wongpinkaew K, Khamsuk P, et al. Outdoor atmospheric corrosion of carbon steel and weathering steel exposed to the tropical-coastal climate of Thailand. Mater Corros, 2020, 71(6): 1019 doi: 10.1002/maco.201911340
[29] Křivý V, Kubzová M, Konečný P, et al. Corrosion processes on weathering steel bridges influenced by deposition of de-icing salts. Materials (Basel), 2019, 12(7): 1089 doi: 10.3390/ma12071089
[30] Liu W M, Liu J, Pan H B, et al. Synergisic effect of Mn, Cu, P with Cr content on the corrosion behavior of weathering steel as a train under the simulated industrial atmosphere. J Alloys Compd, 2020, 834: 155095 doi: 10.1016/j.jallcom.2020.155095
[31] Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels in stagnant water. Mater Chem Phys, 2023, 302: 127745 doi: 10.1016/j.matchemphys.2023.127745
[32] Wang D Q Q, Yao D D, Wang Q, et al. Evaluating the fatigue property of S355J2W steel butt-welded joint: Multiple Notch effects. Int J Fatigue, 2023, 167: 107362 doi: 10.1016/j.ijfatigue.2022.107362
[33] Fu J D, Wan S, Yang Y, et al. Accelerated corrosion behavior of weathering steel Q345qDNH for bridge in industrial atmosphere. Constr Build Mater, 2021, 306: 124864 doi: 10.1016/j.conbuildmat.2021.124864
[34] 刘芮. 不同Ni含量的耐候钢在模拟高湿热海洋环境下的腐蚀行为研究[学位论文]. 昆明:昆明理工大学, 2015 Liu R. Corrosion Behavior of Weathering Steels with Different Ni Contents in Simulated High Hygrothermal Marine Environments [Dissertation]. Kunming: Kunming University of Science and Technology, 2015
[35] 王云龙. 高强度铁素体耐候钢酸性苛刻环境腐蚀行为及机理研究[学位论文]. 北京:北京科技大学, 2023 Wang Y L. Corrosion Behavior and Mechanism of High-strength Ferritic Weathering Steel in Acidic Severe Environment [Dissertation]. Beijing: University of Science and Technology Beijing, 2023
[36] 黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究[学位论文]. 北京:钢铁研究总院, 2018 Huang T. Research on Corrosion Behavior of Weathering Steel in Marine Atmosphere of the South China Sea [Dissertation]. Beijing: Central Iron and Steel Research Institute, 2018
[37] Jaén J A, Guzmán K, Iglesias J, et al. Ten years outdoor exposure of steel in an urban and coastal tropical atmosphere. Corros Eng Sci Technol, 2021, 56(6): 522 doi: 10.1080/1478422X.2021.1917864
[38] Guchhait S K, Dewan S, Saha J K, et al. Recreation of marine atmospheric corrosion condition on weathering steel in laboratory. J Inst Eng (Ind) Ser D, 2014, 95(1): 43
[39] Zhao T L, Wang H B, Luo Q, et al. Rusting behavior of a deformed 450 MPa-grade weathering steel in 5wt.% NaCl salt spray. J Mater Res Technol, 2022, 21: 3181
[40] Liu W, Zhao Q H, Li S Z. Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet–dry acid corrosion environment. Int J Miner Metall Mater, 2017, 24(1): 55 doi: 10.1007/s12613-017-1378-5
[41] 郭铁明, 宋志涛, 董建军, 等. 桥梁耐候钢Q345qNH在模拟西北大气环境中的腐蚀行为. 表面技术, 2018, 47(12):187 Guo T M, Song Z T, Dong J J, et al. Corrosion behavior of Q345qNH bridge weathering steel in simulating northwest atmospheric environment. Surf Technol, 2018, 47(12): 187
[42] Ohtsuka T, Tanaka S. Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions. J Solid State Electrochem, 2015, 19(12): 3559 doi: 10.1007/s10008-015-2825-8
[43] Li Z L, Song J L, Chen J H, et al. Corrosion behavior of a high-strength steel E690 in aqueous electrolytes with different chloride concentrations. J Mater Res Technol, 2023, 22: 596 doi: 10.1016/j.jmrt.2022.11.146
[44] Wang P J, Cheng X Q, Zhang Z Y, et al. Roles of grain refinement in the rust formation and corrosion resistance of weathering steels. Corros Sci, 2023, 224: 111561 doi: 10.1016/j.corsci.2023.111561
[45] Oyabu M, Nomura K, Koike Y, et al. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions. Hyperfine Interact, 2016, 237(1): 68 doi: 10.1007/s10751-016-1244-2
[46] Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance. Constr Build Mater, 2019, 222: 750
[47] Zhu J Y, Li D P, Chang W, et al. In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of Western Pacific Ocean. J Mater Res Technol, 2020, 9(4): 8104 doi: 10.1016/j.jmrt.2020.05.060
[48] Natesan M, Selvaraj S, Manickam T, et al. Corrosion behavior of metals and alloys in marine-industrial environment. Sci Technol Adv Mater, 2008, 9(4): 045002 doi: 10.1088/1468-6996/9/4/045002
[49] Han C S, Li Z G, Yang X, et al. Corrosion behavior and mechanical performance of weathering steel in industrial and rural atmospheric environments. Constr Build Mater, 2024, 411: 134284 doi: 10.1016/j.conbuildmat.2023.134284
[50] Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment. J Mater Res Technol, 2021, 12: 1350 doi: 10.1016/j.jmrt.2021.03.085
[51] Abdo H S, Seikh A H, Fouly A, et al. Controlling atmospheric corrosion of weathering steel using anodic polarization protection technique. Processes, 2021, 9(8): 1469 doi: 10.3390/pr9081469
[52] 陈晓春, 李建晖, 陈少博, 等. 基于CALPUFF模型的山东省独立焦化行业大气污染物分析与预测. 工程科学学报, 2024, 46(7):1311 Chen X C, Li J H, Chen S B, et al. Analysis and prediction of air pollutants in the independent coking industry in Shandong Province based on the CALPUFF model. Chin J Eng, 2024, 46(7): 1311
[53] Li X H, Cao G W, Guo M X, et al. Influence of Cl– and SO2 on carbon steel Q235, pipeline steel L415 and pressure vessel steel 16MnNi corrosion behavior in industrial and marine atmosphere environment. Int J Electrochem Sci, 2021, 16(12): 21126 doi: 10.20964/2021.12.06
[54] Zhang K, Wen B W, Zhang L W, et al. Corrosion behavior of PCB-ENIG in a simulated marine atmospheric environment with industrial pollution. Int J Electrochem Sci, 2020, 15(11): 11036 doi: 10.20964/2020.11.40
[55] Zhi Y J, Fu D M, Zhang D W, et al. Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach. Metals, 2019, 9(3): 383 doi: 10.3390/met9030383
[56] Gao J, Xu Q Q, Yang S T, et al. Interfacial corrosion behaviors of coating/Q450NQR1 weathering steel under simulated harsh marine atmosphere. J Mater Res Technol, 2022, 21: 2471 doi: 10.1016/j.jmrt.2022.10.031
[57] 高倩钰, 曹航, 金文良, 等. 沉管隧道钢壳在海水中的加速腐蚀. 工程科学学报, 2023, 45(6):941 Gao Q Y, Cao H, Jin W L, et al. Accelerated corrosion of the steel shell of an immersed tube tunnel in seawater. Chin J Eng, 2023, 45(6): 941
[58] Huang C X, Su X H, Song Q Q, et al. Effects of temperature on acceleration and simulation of indoor corrosion test of Q235 carbon steel. Anti Corros Meth Mater, 2021, 68(6): 564 doi: 10.1108/ACMM-01-2021-2426
[59] Lin C C, Wang C X. Correlation between accelerated corrosion tests and atmospheric corrosion tests on steel. J Appl Electrochem, 2005, 35(9): 837 doi: 10.1007/s10800-005-1322-7
[60] Xu H L, Yuan R, Zhang Z H, et al. Influence of UV illumination on the corrosion behavior of new 3Ni weathering steel in marine atmospheric environments. Metals, 2023, 13(9): 1543 doi: 10.3390/met13091543
[61] Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere. Appl Surf Sci, 2018, 436: 80 doi: 10.1016/j.apsusc.2017.12.018
[62] Li Z L, Xiao K, Dong C F, et al. Atmospheric corrosion behavior of low-alloy steels in a tropical marine environment. J Iron Steel Res Int, 2019, 26(12): 1315 doi: 10.1007/s42243-019-00316-9
[63] Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corros Sci, 2021, 186: 109427 doi: 10.1016/j.corsci.2021.109427
[64] Królikowska A, Komorowski L, Kunce I, et al. Corrosion assessment of a weathering steel bridge structure after 30 years of service. Materials, 2021, 14(14): 3788 doi: 10.3390/ma14143788
[65] 李晓刚, 肖葵, 董超芳, 等. 我国海洋大气腐蚀分级分类与机理//2014海洋材料腐蚀与防护大会论文集. 北京, 2014:7 Li X G, Xiao K, Dong C F, et al. Corrosion mechanism and classification in marine atmosphere of China //Proceedings of the 2014 Conference on Corrosion and Protection of Marine Materials. Beijing, 2014: 7
[66] 朱相荣. 金属材料的海洋腐蚀与防护. 北京:国防工业出版社, 1999 Zhu X R. Corrosion and Protection of Metals in Marine Environment. Beijing: National Defense Industry Press, 1999
[67] Wang B Q, Li Y R, Cheng X Q, et al. Data-driven optimization model customization for atmospheric corrosion on low-alloy steel: Incorporating the dynamic evolution of the surface rust layer. Corros Sci, 2023, 221: 111349 doi: 10.1016/j.corsci.2023.111349
[68] Zhao Q Y, Wang H Y, Guo C, et al. Galvanic corrosion of low-hydrogen-embrittlement Cd–Ti 300M steel coupled with composite-coated TC4 titanium alloy in an industrial-marine atmospheric environment. J Mater Eng Perform, 2021, 30(5): 3872 doi: 10.1007/s11665-021-05698-0
[69] Zhi Y J, Yang T, Fu D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels. J Mater Sci Technol, 2020, 49: 202 doi: 10.1016/j.jmst.2020.01.044
[70] Bupesh Raja V K, Palanikumar K, Rohith Renish R, et al. Corrosion resistance of corten steel—A review. Mater Today Proc, 2021, 46: 3572 doi: 10.1016/j.matpr.2021.01.334
[71] Wang Y X, Tsutsumi S, Kawakubo T, et al. Effects of phosphorus content on fatigue performance of friction stir welded mild steels. Constr Build Mater, 2022, 324: 126682 doi: 10.1016/j.conbuildmat.2022.126682
[72] Buck D M. Copper in steel - the influence on corrosion. J Ind Eng Chem, 1913, 5(6): 447 doi: 10.1021/ie50054a003
[73] Larrabee C P, Coburn S K. The atmospheric corrosion of steels as influenced by changes in chemical composition //Proceedings of the 1st International Congress on Metallic Corrosion. London, 1962: 276
[74] Zhang T Y, Liu W, Khan H I, et al. Effects of Cu on the corrosion resistance of heat-treated weathering steel in a marine environment. Mater Today Phys, 2023, 36: 101160 doi: 10.1016/j.mtphys.2023.101160
[75] Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment. Constr Build Mater, 2021, 277: 122298 doi: 10.1016/j.conbuildmat.2021.122298
[76] Zuo M F, Chen Y L, Mi Z L, et al. Effects of Cr content on corrosion behaviour and corrosion products of spring steels. J Iron Steel Res Int, 2019, 26(9): 1000 doi: 10.1007/s42243-019-00250-w
[77] Zhao Q H, Liu W, Zhu Y C, et al. Effect of small content of chromium on wet–dry acid corrosion behavior of low alloy steel. Acta Metall Sin (Engl Lett), 2017, 30(2): 164 doi: 10.1007/s40195-016-0513-z
[78] Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6
[79] Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere. Int J Miner Metall Mater, 2018, 25(3): 325 doi: 10.1007/s12613-018-1576-9
[80] Xu X Y, Li J Z, Zhang W, et al. Structure-property relationship in a micro-laminated low-density steel for offshore structure. Steel Res Int, 2019, 90(5): 1800515 doi: 10.1002/srin.201800515
[81] Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives. Corros Sci, 2020, 165: 108416 doi: 10.1016/j.corsci.2019.108416
[82] Zhu C Y, Gao X H, Zhu C L, et al. A study on corrosion behavior of advanced weathering steel relying on Ni–Mo synergy under marine atmosphere. J Mater Res Technol, 2024, 30: 8469 doi: 10.1016/j.jmrt.2024.05.182
[83] Jia Y G, Zhou C, Gao Y H, et al. Atmospheric corrosion resistance of weathering angle steels in a simulated industrial atmosphere. J Mater Eng Perform, 2020, 29(2): 1225 doi: 10.1007/s11665-020-04666-4
[84] Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere. Constr Build Mater, 2021, 266: 120937 doi: 10.1016/j.conbuildmat.2020.120937
[85] 刘晓翠, 张转转, 刘锟, 等. Cu、Cr、Ni元素对高强耐候钢腐蚀稳定性的影响. 轧钢, 2019, 36(6):17 Liu X C, Zhang Z Z, Liu K, et al. Influence of copper, chromium and nickel on the corrosion resistance property of high strength weathering resistant steel. Steel Roll, 2019, 36(6): 17
[86] Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion. Corros Sci, 2021, 183: 109353 doi: 10.1016/j.corsci.2021.109353
[87] Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology. J Mater Sci Technol, 2022, 104: 67 doi: 10.1016/j.jmst.2021.05.086
[88] Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements. J Mater Sci Technol, 2021, 64: 222 doi: 10.1016/j.jmst.2020.01.040
[89] Da G J, Yang Z M, Yang S W, et al. Corrosion behavior of 700 MPa grade weathering steel with 4.0wt% Ni and 5.0wt% Cr in simulated marine atmospheric environment. Constr Build Mater, 2024, 414: 134790
[90] Zhang B, Liu W, Sun Y P, et al. Corrosion behavior of the 3wt.% Ni weathering steel with replacing 1wt.% Cr in the simulated tropical marine atmospheric environment. J Phys Chem Solids, 2023, 175: 111221
[91] Lian Z W, Peng T E, Hu S, et al. Insight on corrosion behavior of a Cu–P–Cr–Ni steel with different Ni contents by electrochemical and periodic immersion corrosion experiments. J Iron Steel Res Int, 2023, 30(3): 580 doi: 10.1007/s42243-022-00774-8
[92] Zhang T Y, Liu W, Yin Z, et al. Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. J Mater Eng Perform, 2020, 29(4): 2531 doi: 10.1007/s11665-020-04738-5
[93] Jia J H, Wu W, Cheng X Q, et al. Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test. Constr Build Mater, 2020, 245: 118463 doi: 10.1016/j.conbuildmat.2020.118463
[94] Zhang B, Liu W, Xie J Q, et al. Substitution of Ni with Cu and its impact on the corrosion resistance of Ni-advanced weathering steels in the simulated tropical marine atmosphere. Met Mater Int, 2024, 30(11): 3030 doi: 10.1007/s12540-024-01703-y
[95] Niu G, Yuan R, Wang E M, et al. Unraveling the influence of Mo on the corrosion mechanism of Ni-advanced weathering steel in harsh marine atmospheric environments. J Mater Sci Technol, 2024, 195: 41 doi: 10.1016/j.jmst.2024.02.021
[96] Hu Q, Yang S W, Zhang W H, et al. Corrosion failure analysis of engineering structural steels in tropical marine atmospheres: A comparative study of ordinary and new weathering steels. Eng Fail Anal, 2024, 156: 107830 doi: 10.1016/j.engfailanal.2023.107830
[97] Yang Y, Jiang C, Cheng X Q, et al. Effect of Sb on the corrosion behavior of low-alloy steels in a simulated polluted marine atmosphere. J Mater Eng Perform, 2020, 29(4): 2648 doi: 10.1007/s11665-020-04765-2
[98] Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1% Sb in atmospheric environment of the Yellow Sea in China. Corros Sci, 2021, 188: 109549
[99] Li J S, Chen J H, Song J L, et al. Research on corrosion behavior of truck body steel in chlorine-containing sulfuric acid environment. J Mater Res Technol, 2022, 21: 1878 doi: 10.1016/j.jmrt.2022.10.005
[100] Zhang N, Lian Z W, Zhang W C, et al. Exploring the corrosion behavior of low-Ni Cu–P–Cr–Ni weathering steel with different P contents in a simulated atmospheric environment. J Mater Eng Perform, 2023, 32(1): 44 doi: 10.1007/s11665-022-07072-0
[101] Sun R, Yu Q, Zhang Y, et al. Effect of Si content on the corrosion behavior of 420 MPa weathering steel. Metals, 2019, 9(5): 486 doi: 10.3390/met9050486
[102] Chen Z Y, Yu Q, Zhao L Y, et al. Insight into the role of Si on corrosion resistance of weathering steel in a simulated industrial atmosphere. J Mater Res Technol, 2023, 26: 487 doi: 10.1016/j.jmrt.2023.07.216
[103] Liu F Z. Effects of nickel and silicon content on the corrosion inhibition of weathering steels in simulated coastal environments. Int J Electrochem Sci, 2021, 16(1): 151017 doi: 10.20964/2021.01.69
[104] Liu H X, Huang F, Yuan W, et al. Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere. Corros Sci, 2020, 173: 108758 doi: 10.1016/j.corsci.2020.108758
[105] Yang L, Yang X J, Xu F F, et al. Investigation of rust layer on low alloy steel with 0.40wt% Sn in a rural atmospheric environment. Constr Build Mater, 2023, 402: 133029
[106] Sun M H, Pang Y J, Du C W, et al. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere. Constr Build Mater, 2021, 302: 124346 doi: 10.1016/j.conbuildmat.2021.124346
[107] Xu X Y, Tian L, Zhou Y, et al. Effect of Nb on corrosion behavior of inner bottom plate of cargo oil tankers. J Iron Steel Res Int, 2019, 26(6): 611 doi: 10.1007/s42243-018-0180-6
[108] Wang Y F, Cheng G X, Wu W, et al. Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM. Corros Sci, 2018, 130: 252 doi: 10.1016/j.corsci.2017.10.029
[109] Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel. J Mater Sci Technol, 2021, 93: 232 doi: 10.1016/j.jmst.2021.03.014
[110] Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling. Constr Build Mater, 2021, 309: 125211 doi: 10.1016/j.conbuildmat.2021.125211
[111] Crespo A, Díaz I, Neff D, et al. Effect of sulfuric acid patination treatment on atmospheric corrosion of weathering steel. Metals, 2020, 10(5): 591 doi: 10.3390/met10050591
[112] Sun B Y, Yan L C, Gao K W. Hydrophobicity and improved corrosion resistance of weathering steel via a facile Sol-gel process with a natural rust film. ACS Appl Mater Interfaces, 2023, 15(39): 46400 doi: 10.1021/acsami.3c10116
[113] Okada H, Hosoi Y, Yukawa K I, et al. Structure of the rust formed on low alloy steels in atmospheric corrosion. Tetsu-to-Hagane, 1969, 55(5): 355 doi: 10.2355/tetsutohagane1955.55.5_355
[114] Miyata S, Takemura M, Furuta A, et al. Rust stabilizing surface treatment for weathering steel(Cupten Coat M). NKK Tech Rep, 2000, 174(21): 14
[115] Imazu T, Kurisu T, Nakai Y, et al. Rust stabilizing surface treatment for atmospheric corrosion-resistant steel (rs-coat). Kawasaki Steel Tech Rep, 1984, 10(2): 18
[116] Kisikawa H, Miyuki H, Hara S, et al. Development of surface treatment technique promoting protective-rust formation. Sumitomo Search, 1998, 60(4): 20
[117] Yamashita M, Uchida H. Recent Research and Development in Solving Atmospheric Corrosion Problems of Steel Industries in Japan //Industrial Applications of the Mössbauer Effect. Virginia Beach, 2002: 153
[118] Yu Q, Dong W Y, Yang X Y, et al. The role of the direct current electric field in enhancing the protective rust layer of weathering steel. J Mater Eng Perform, 2021, 30(8): 6309 doi: 10.1007/s11665-021-05855-5
[119] Yu Q, Li B N, Wang F, et al. The role of stabilization technology on the enhancement of corrosion resistance and corrosion mechanism for weathering steel. Mater Today Commun, 2024, 40: 109694 doi: 10.1016/j.mtcomm.2024.109694
[120] Chiavari C, Bernardi E, Martini C, et al. Atmospheric corrosion of Cor-Ten steel with different surface finish: Accelerated ageing and metal release. Mater Chem Phys, 2012, 136(2-3): 477 doi: 10.1016/j.matchemphys.2012.07.014
[121] 石振家, 王雷, 陈楠, 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势. 腐蚀科学与防护技术, 2015, 27(5):503 Shi Z J, Wang L, Chen N, et al. Weathering steel surface rust layer and its stabilization treatment status and development trend. Corros Sci Prot Technol, 2015, 27(5): 503
[122] 林鹏飞, 杨忠民, 陈颖, 等. 耐候钢锈层及其稳定化处理现状. 钢铁, 2021, 56(3):58 Lin P F, Yang Z M, Chen Y, et al. Rust layer of weathering steel and its stabilization treatment status. Iron Steel, 2021, 56(3): 58
[123] 刘涛, 王胜民, 侯云波, 等. 耐候钢表面锈层稳定化研究现状. 表面技术, 2018, 47(10):240 Liu T, Wang S M, Hou Y B, et al. Research status on surface rust layer stabilization of weathering steel. Surf Technol, 2018, 47(10): 240
[124] Hu Q, Yang S W, Zhang X, et al. Accelerating stabilization of weathering steel through rust modification pre-corrosion treatment. Heliyon, 2024, 10(1): e23842 doi: 10.1016/j.heliyon.2023.e23842
[125] Kimura M, Kihira H, Ohta N, et al. Control of Fe(O, OH)6 nano-network structures of rust for high atmospheric-corrosion resistance. Corros Sci, 2005, 47(10): 2499 doi: 10.1016/j.corsci.2005.04.005
[126] Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments. Corros Sci, 2011, 53(12): 4187 doi: 10.1016/j.corsci.2011.08.028
[127] 张馨元, 叶琪, 周勇, 等. 耐候钢表面锈层稳定化处理技术研究现状和展望. 材料保护, 2023, 56(2):120 Zhang X Y, Ye Q, Zhou Y, et al. Research status and prospect of stabilization treatment technique for rust layer on weathering steel surface. Mater Prot, 2023, 56(2): 120
[128] 高立军, 杨建炜, 张旭, 等. 耐候钢表面锈层稳定化处理技术研究. 表面技术, 2020, 49(3):255 Gao L J, Yang J W, Zhang X, et al. Rust stabilization treatment of weathering steel surface. Surf Technol, 2020, 49(3): 255
[129] 刘弘, 杨善武, 张旭, 等. 耐候钢表面预处理对其腐蚀行为的影响. 材料热处理学报, 2015, 36(5):178 Liu H, Yang S W, Zhang X, et al. Influence of surface pre-treatment on corrosion behavior of weathering steel. Trans Mater Heat Treat, 2015, 36(5): 178
[130] 刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成. 中国表面工程, 2019, 32(6):98 doi: 10.11933/j.issn.1007-9289.20190125001 Liu T, Wang S M, Zhao X J. Stabilization treatment and formation of rust layer on weathering steel. China Surf Eng, 2019, 32(6): 98 doi: 10.11933/j.issn.1007-9289.20190125001